Abstract
The fluidelastic instability behaviour of flexible cylinders subjected to internal single-phase (liquid or gas) flows is now reasonably well understood. Although many piping systems operate in two-phase flows, so far very little work has been done to study their dynamic behaviour under such flows. This paper presents the results of a series of experiments to study the fluidelastic instability behaviour of flexible tubular cylinders subjected to two-phase internal flow. Several flexible cylinders of different diameters, lengths and flexural rigidities were tested over a broad range of flow velocities and void fractions in an air-water loop to simulate two-phase flows. Well-defined fluidelastic instabilities were observed in two-phase flows. The existing theory to formulate the fluidelastic behaviour under internal flow was developed further to take into account two-phase flow. The agreement between the experimental results and the modified theory is remarkably good. However, it depends on using an appropriate model to formulate the characteristics of the two-phase flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.