Abstract

This paper represents the first stage of a fundamental investigation of the vibration phenomena induced in heat exchanger bundles subject to a cross-flow. Using aerodynamic force coefficient data, obtained experimentally from a static wind tunnel model, a linearized quasi-static analysis is employed to analyze the stability of an infinite double row of circular cylinders in uniform cross-flow. From the analysis it is shown that the instability is a result of the negative fluid damping forces, resulting from the complex flow pattern in the row. A new expression is obtained relating the critical velocity for the onset of instability to the damping parameter, the mass parameter and the pitch ratio of the cylinders. The expression is compared with experimental data available in the literature, from dynamic laboratory results, and a good correlation is obtained. Using this stability analysis the effect of mechanical coupling and frequency detuning, both between modes in one cylinder and modes in adjacent cylinders, is examined. In general it is shown that mechanical coupling is destabilizing and frequency detuning stabilizing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call