Abstract

The effect of membrane viscosity on the dynamics of vesicles in shear flow is studied. We present a new simulation technique, which combines three-dimensional multiparticle collision dynamics for the solvent with a dynamically triangulated membrane model. Vesicles are found to transit from steady tank treading to unsteady tumbling motion with increasing membrane viscosity. Depending on the reduced volume and membrane viscosity, shear can induce both discocyte-to-prolate and prolate-to-discocyte transformations. This behavior can be understood from a simplified model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.