Abstract

The current numerical investigation tackles the fluid-structure interaction in a blood vessel subjected to a prescribed heating scheme on tumor tissues under thermal therapy. A pulsating incompressible laminar blood flow was employed to examine its impact on the flow and temperature distribution within the blood vessel. In addition, the arterial wall was modeled using the volume-averaged porous media theory. The motion of a continuous and deformable arterial wall can be described by a continuous displacement field resulting from blood pressure acting on the tissue. Moreover, discretization of the transport equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. The numerical results were validated by comparing them against documented studies in the literature. Three various heating schemes were considered: constant temperature, constant wall flux, and a step-wise heat flux. The first two uniform schemes were found to exhibit large temperature variation within the tumor, which might affect the surrounding healthy tissues. Meanwhile, larger vessels and flexible arterial wall models render higher variation of the temperature within the treated tumor, owing to the enhanced mixing in the vicinity of the bottom wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.