Abstract

Driven by the demands of ocean exploration, an increasing number of manta ray-inspired robots have been designed and manufactured, primarily utilizing flexible skeletons combined with motor-driven mechanisms. However, the mechanical analysis of these designs remains underdeveloped, often relying on simplistic imitation of biological prototypes and typically neglecting the vertical motion induced by pectoral fin flapping. This paper presents a fluid–structure interaction analysis framework that couples rigid body motion with elastic deformation using flexible multibody dynamics and the vortex particle method. An implicit iterative algorithm with Aitken relaxation is employed to address added-mass instability, and the framework has been validated against experimental data. An analysis of a representative manta-bot model shows that self-induced vertical undulations reduce the thrust coefficient by approximately 40% compared to fixed vertical degrees of freedom, while slightly improving overall propulsive efficiency. The study also highlights the critical role of mass distribution in manta-bots, noting that excessive focus on complex pectoral fin movements and large fin mass can significantly reduce thrust by increasing vertical displacement, ultimately proving counterproductive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.