Abstract
This paper presents the purely fast Lagrangian vortex method (FLVM) for the simulation of the external incompressible flows past heaving and pitching bodies with high-frequency oscillation. The Nascent vortex element is introduced to the flow field to retain the Lagrangian characteristics of the solver. The viscous effect is modeled using a core spreading method coupled with the splitting and merging spatial adaptation scheme. The particle’s velocity is calculated using Biot–Savart formulation. To accelerate computation, a fast multipole method (FMM) is employed. The validity of FLVM solver is verified by temporal and spatial convergence studies for the case of flows past an impulsively started cylinder at the Reynolds numbers ranging from 50 to 9500. The accuracy of FLVM is then confirmed for the simulation of flows around the pitching flat plate and oscillating airfoil. The time history of drag and lift coefficients and the vorticity contours show a good agreement with those reported in literature. Furthermore, the FLVM is employed to determine the flutter derivatives and flutter speed of an oscillating flat plate. Results are compared with theoretical solutions based on Theodorsen’s function. In general, the results agree well with those obtained by the inviscid theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.