Abstract
Matrix metalloproteinase (MMP)-1, 2, with their endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1, 2 are critical for extracellular matrix remodeling in human periodontal ligament (PDL) and their expression are sensitive to mechanical stresses. Shear stress as the main type of mechanical stress in tooth movement is involved in matrix turnover. However, how shear stress regulates MMPs and TIMPs system is still unclear. In this study, we investigated the effect of fluid shear stress on expression of MMP-1, 2 and TIMP-1, 2 in human PDL cells and the possible roles of mitogen-activated protein kinases in this process. Three levels of fluid shear stresses (6, 9 and 12dyn/cm2) were loaded on PDL cells for 2, 4, 8 and 12h. The results indicated that fluid shear stress rearranged cytoskeleton in PDL cells. Fluid shear stress increased expression of MMP-1, 2, TIMP-1 and suppressed TIMP-2 expression. MAP kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were activated rapidly by fluid shear stress. The ERK inhibitor blocked fluid shear stress induced MMP-1 expression and P38 inhibitor reduced fluid shear stress stimulated MMP-2 expression. Our study suggested that fluid shear stress involved in PDL remodeling via regulating MMP-1, 2 and TIMP-1, 2 expression. ERK regulated fluid shear stress induced MMP-1 expression and P38 play a role in fluid shear stress induced MMP-2 upregulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.