Abstract
Interleukin-11 (IL-11) is a pleiotropic thrombopoietic cytokine and immune modulator, clinically approved for alleviation of chemotherapy-induced thrombocytopenia in non-myeloid malignancies. IL-11 therapy exerts fluid accumulation-associated adverse effects, complicating its administration and limiting its use. Implementation of standard biomathematical techniques to assess these effects is not possible, due to incomplete knowledge of the underlying mechanisms. This study investigates IL-11-induced blood volume expansion (BVE) by a new mathematical modelling methodology. Alternative models for BVE following IL-11 therapy were constructed, calibrated with clinical information and simulated in a number of treatment scenarios. The models demonstrated high compliance and were equally capable of reliably predicting BVE in a wide range of treatments, provided sufficient data. Model simulations indicate that frequent and low dose IL-11 regimens are favored for ensuring minimal fluid retention, upon the current IL-11 therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.