Abstract

BackgroundPassive leg raising (PLR) is a so called self-volume challenge used to test for fluid responsiveness. Changes in cardiac output (CO) or stroke volume (SV) measured during PLR are used to predict the need for subsequent fluid loading. This requires a device that can measure CO changes rapidly. The Vigileo™ monitor, using third-generation software, allows continuous CO monitoring. The aim of this study was to compare changes in CO (measured with the Vigileo device) during a PLR manoeuvre to calculate the accuracy for predicting fluid responsiveness.MethodsThis is a prospective study in a 20-bedded mixed general critical care unit in a large non-university regional referral hospital. Fluid responders were defined as having an increase in CO of greater than 15 % following a fluid challenge. Patients meeting the criteria for circulatory shock with a Vigileo™ monitor (Vigileo™; FloTrac; Edwards™; Lifesciences, Irvine, CA, USA) already in situ, and assessed as requiring volume expansion by the clinical team based on clinical criteria, were included. All patients underwent a PLR manoeuvre followed by a fluid challenge.ResultsData was collected and analysed on stroke volume variation (SVV) at baseline and CO and SVV changes during the PLR manoeuvre and following a subsequent fluid challenge in 33 patients. The majority had septic shock. Patient characteristics, baseline haemodynamic variables and baseline vasoactive infusion requirements were similar between fluid responders (10 patients) and non-responders (23 patients). Peak increase in CO occurred within 120 s during the PLR in all cases. Using an optimal cut point of 9 % increase in CO during the PLR produced an area under the receiver operating characteristic curve of 0.85 (95 % CI 0.63 to 1.00) with a sensitivity of 80 % (95 % CI 44 to 96 %) and a specificity of 91 % (95 % CI 70 to 98 %).ConclusionsCO changes measured by the Vigileo™ monitor using third-generation software during a PLR test predict fluid responsiveness in mixed medical and surgical patients with vasopressor-dependent circulatory shock.Electronic supplementary materialThe online version of this article (doi:10.1186/s40560-016-0188-6) contains supplementary material, which is available to authorized users.

Highlights

  • Passive leg raising (PLR) is a so called self-volume challenge used to test for fluid responsiveness

  • It has been shown that only half of critically ill patients thought to be preload responsive

  • Passive leg raising (PLR), whereby the patients legs are transiently raised by 45°, and the torso flattened, results in a reversible flow of 150–300 ml of blood from the venous capacitance vessels of the lower body, to the thoracic compartment, a so called self-volume challenge [18,19,20]

Read more

Summary

Introduction

Passive leg raising (PLR) is a so called self-volume challenge used to test for fluid responsiveness. Changes in cardiac output (CO) or stroke volume (SV) measured during PLR are used to predict the need for subsequent fluid loading. This requires a device that can measure CO changes rapidly. The VigileoTM monitor, using third-generation software, allows continuous CO monitoring. The aim of this study was to compare changes in CO (measured with the Vigileo device) during a PLR manoeuvre to calculate the accuracy for predicting fluid responsiveness

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call