Abstract

In this paper, we consider fluid queue models with infinite buffer capacity which receives and releases fluid at variable rates in such a way that the net input rate of fluid into the buffer (which is negative when fluid is flowing out of the buffer) is uniquely determined by the number of customers in an M/M/1/N queue model (that is, the fluid queue is driven by this Markovian queue) with constant arrival and service rates. We use some interesting identities of tridiagonal determinants to find analytically the eigenvalues of the underlying tridiagonal matrix and hence the distribution function of the buffer occupancy. For specific cases, we verify the results available in the literature.

Highlights

  • International Journal of Submit your manuscripts at http://www.hindawi.com

  • International Journal of Mathematics and Mathematical Sciences

Read more

Summary

Introduction

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call