Abstract

AbstractIn Mogul west of Reno, Nevada, USA, in late February 2008 an earthquake sequence occurred that culminated in a magnitude 4.9 mainshock after a foreshock‐rich period lasting approximately 2 months on previously unidentified fault structures. In this article, we show that the foreshock sequence may have been driven by a fluid pressure intrusion. We use 1,082 previously calculated earthquake focal mechanisms to infer the local stress field as well as 1,408 relocated foreshock events to determine the required excess fluid pressure field in the source region of the Mogul earthquake sequence to trigger these events. A model of nonlinear pore pressure diffusion is used to model the fluid flow in a highly fractured subsurface. We find a strong correlation between high fluid pressure fronts and foreshock hypocenters, suggesting a natural fluid‐driven earthquake sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.