Abstract

Phase equilibria phenomena such as cosolvency effects, miscibility windows, and non-critical (liquid + gas) (l.g.) holes in the critical surface in (carbon dioxide + a 1-alkanol + an alkane) were studied up to 100 MPa. In continuation of experiments by Kordikowski and Schneider and Pöhler et al., carbon dioxide systems containing a 1-alkanol withm⩽ 10 and an alkane with n⩽ 16 (where m and n denote the number of carbon atoms in the alkyl chains of the 1-alkanol, or the alkane, respectively) were investigated for large cosolvency effects. An isothermal cosolvency effect of 14 MPa has been found in (carbondioxide + 1- octanol + hexadecane) at T= 298 K with additional exhibition of large isobaric miscibility windows. Non-critical l.g. holes in the critical surface are also experimentally established. These l.g. holes in the critical surface, which have already been described as l.g. two-phase holes in the (liquid + liquid + gas) (l.l.g.) three-phase surface by Patton et al. and Peters et al., are now deduced from the occurrence of cosolvency effects when cosolvency lowers the critical surface of a ternary system onto the l.l.g. three-phase surface. This can ultimately lead to a penetration of the l.l.g. three-phase surface by the critical surface with the exhibition of a, mostly closed-loop, critical end point locus as the intersection line, surrounding a non-critical l.g. region. The relation between miscibility windows and holes in the critical surface is illustrated by the examination of systems exhibiting both miscibility windows and holes such as (carbon dioxide + 1-heptanol + pentadecane) and (carbon dioxide + 1-decanol + tetradecane).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.