Abstract
This paper explores the potential of Lab on a Chip (LOC) technologies in transforming diagnostic, biotechnology, and chemical/mechanical analysis fields. The proposed solution integrates advanced image processing into an automated tool, providing a robust and efficient method for precise data extraction from microfluidic chip images. In this study, we identify the fluid path in each frame, thereby improving the platform for tracking valuable fluid parameters over time, such as the viscosity of biofluids. Different patterns of LOC were developed then captured and related masks were established to create the 150 images dataset.[1]Using the DeepLabv3+ deep learning model on the dataset, this study achieves remarkable validation accuracy of 98.95% and a low loss value of 0.012 for chip analysis path segmentation. The successful integration of DeepLabv3+ and meticulous preprocessing enhances understanding of fluid behavior within microfluidic chips, paving the way for advancements in chip design, diagnostics, and fluid feature-based analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.