Abstract

We present a mechanistic model for a Newtonian fluid called fluid particle dynamics. By analyzing the concept of ``fluid particle'' from the point of view of a Voronoi tessellation of a molecular fluid, we propose an heuristic derivation of a dissipative particle dynamics algorithm that incorporates shear forces between dissipative particles. The inclusion of these non-central shear forces requires the consideration of angular velocities of the dissipative particles in order to comply with the conservation of angular momentum. It is shown that the equilibrium statistical mechanics requirement that the linear and angular velocity fields are Gaussian is sufficient to construct the random thermal forces between dissipative particles. The proposed algorithm is very similar in structure to the (isothermal) smoothed particle dynamics algorithm. In this way, this work represents a generalization of smoothed particle dynamics that incorporates consistently thermal fluctuations and exact angular momentum conservation. It contains also the dissipative particle dynamics algorithm as a special case. Finally, the kinetic theory of the dissipative particles is derived and explicit expressions of the transport coefficients of the fluid in terms of model parameters are obtained. This allows to discuss resolution issues for the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call