Abstract

Geysers are rare geologic features that episodically erupt water and steam. While it is understood that the eruptions are triggered by the conversion of thermal to kinetic energy during decompression of hot fluids, geysers commonly exhibit a range of dynamic behaviors in-between and during eruptions that have yet to be adequately explained. In-situ measurements of temperature and pressure as well as remote geophysical techniques have revealed oscillatory behavior across a range of timescales from eruption cycles to impulsive bubble collapse events. Many geysers, including Old Faithful in Yellowstone National Park, USA, are believed to have laterally-offset subsurface reservoirs (referred to as a ‘bubble trap’) that can trap and accumulate noncondensable gas or steam entering the system. The impact of a bubble trap on the dynamic behaviors of the system, however, has not been fully established. We constructed a laboratory bubble trap and performed a series of experiments to study how fluids oscillate back and forth between the eruption conduit and laterally-offset reservoir in-between eruptions. We present a new theoretical model based on Hamiltonian mechanics that successfully predicts the oscillation frequencies observed in our experiments based on the conduit system geometry, the amount of gas that has accumulated in the bubble trap, and the amount of liquid water in the system. We demonstrate that when scaled to Old Faithful Geyser, this mechanism is capable of producing oscillations at the observed frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call