Abstract

A significant belt of carbonate-hosted Pb–Zn mineralization occurs in the Himalayan–Zagros collisional orogenic system. Three differing types of these Pb–Zn deposits within this belt have been identified based on variations in gangue mineral assemblages, leading to the classification of carbonate-, quartz- and fluorite-rich classes of Pb–Zn deposits. The third Pb–Zn mineralization (fluorite-rich) type is common in this orogenic system, but little research has been undertaken on it. Here, we focus on the Mohailaheng deposit, a large-sized fluorite-rich carbonate-hosted Pb–Zn deposit (>100Mt Pb+Zn ores with average grade of 2.18%–4.23%); the deposit is located in the Sanjiang Cenozoic thrust-fold belt, an important part of the Himalayan–Zagros collisional orogenic system and an area that formed during the early Tertiary India–Eurasia collision. The main orebodies in this deposit are stratabound and are hosted by Carboniferous limestones that are located along secondary faults associated with a regional thrust fault. The main assemblage is a sphalerite+galena+pyrite sulfide assemblage associated with a calcite+fluorite+barite+quartz+dolomite gangue assemblage. Detailed field and experimental work indicates that the deposit formed during three distinct phases of hydrothermal activity. Studies on fluid inclusion and stable isotopes of gangue minerals indicate that two dominant distinct fluids involving the deposit formation. They include (1) a low-temperature (130–140°C), high-salinity (23–24wt.% NaCl equivalent) basinal brine containing Na+–K+–Mg2+–Ca2+–Cl− ions and abnormally high SO42− concentrations, which probably derived from Tertiary basins in the regional district, and (2) a low- to moderate-temperature (170–180°C) and moderate- to high-salinity (19–20wt.% NaCl equivalent) metamorphic fluid containing Na+–K+–Mg2+–Cl––SO42− ions and abnormally high F− and organic matter concentrations, that probably formed during regional metamorphism. Some evaporated seawaters and meteoric fluids were also identified in mixtures with these two dominant fluids. The Pb–Zn mineralization at Mohailaheng formed during three distinct stages, consistent with the regional tectonic history. The first stage involved the formation of favorable lithological and structural traps at Mohailaheng during regional thrusting, leading to the migration of compressed metamorphic waters at depth along a detachment zone, sequestering metals from sediments within the region. Basinal brines at the surface also began to infiltrate down along the secondary faults, dissolving gypsum from the underlying sediments. The second stage was associated with the cessation of thrusting and the onset of strike-slip movements along these thrust faults. Metamorphic fluids containing high concentrations of halogen ions, organic gases, and metals ascended into the structural traps at Mohailaheng along the reactivated thrust faults, causing fluorite, calcite, and some sulfide precipitation. Then, basinal brines rich in SO42− quickly descended into the structural traps along the reactivated faults, causing reduction of SO42− by organic matter, and producing significant amounts of H2S. The reduced sulfur then reacted with the metals in the fluids, causing significant sulfide precipitation. The third stage was associated with metal-depleted fluids, which only resulted in the precipitation of calcite from the diluted basinal brines. Combining these findings with research results on other fluorite-rich carbonate-hosted Pb–Zn deposits in the Himalayan–Zagros orogenic system suggests that this type of carbonate-hosted Pb–Zn deposits can also be classified as Mississippi Valley-type (MVT) deposits, and that the origin of the fluorite in these deposits may be related to multiple hydrothermal fluids involved in the mineralization evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.