Abstract
In this study, numerical calculations of the collision process between water drops immersed in a continuous phase composed of a hydrocarbon (n-heptane) is reported. For the resolution of the hydrodynamic equations, i.e., the continuity and momentum equations, the finite volume method was used. A range of values for the velocity of collision between the drops was chosen. These values for the velocity of collision give two different outcomes. For these off-center collisions, it is shown that the system of drops rotates around its mass center acquiring certain angular momentum. When the velocity of collision is 0.2 m/s, the system of drops coalesces without the deformation of the surface of the drops and the prevailing surface tension forces. These surface tension forces with the evolution of the dynamics transform the bigger mass of water as a very well-defined circular drop. For a velocity of collision of 3.5 m/s, the system shows coalescence with a rotation of a bigger mass of water with certain angular momentum. In this case, there is a stretch of the surface of the drops, but due to the value of the velocity of collision, the prevailing inertial forces and the bigger mass of water are deformed spinning around its mass center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.