Abstract
We study the properties of a one-dimensional (1D) granular gas consisting of N hard rods on a line of length L (with periodic boundary conditions). The particles collide inelastically and are fluidized by a heat bath at temperature Tb and viscosity gamma. The analysis is supported by molecular dynamics simulations. The average properties of the system are first discussed, focusing on the relations between granular temperature Tg=mv2, kinetic pressure, and density rho=N/L. Thereafter, we consider the fluctuations around the average behavior obtaining a slightly non-Gaussian behavior of the velocity distributions and a spatially correlated velocity field; the density field displays clustering: this is reflected in the structure factor which has a peak in the k approximately 0 region suggesting an analogy between inelastic hard core interactions and an effective attractive potential. Finally, we study the transport properties, showing the typical subdiffusive behavior of 1D stochastically driven systems, i.e., </x(t)-x(0)/2> approximately Dt(1/2), where D for the inelastic fluid is larger than the elastic case. This is directly related to the peak of the structure factor at small wave vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.