Abstract
The Paleoproterozoic terranes (Birimian) of West Africa are well known to host numerous economic gold mineralizations. The Angovia gold mineralization is located in a brecciated and mylonitic zone within the Birimian greenstones. The sulfide–gold mineralization is mainly represented by gold associated with pyrite and chalcopyrite. A fluid inclusion study undertaken on mineralized quartz veins revealed the presence of aqueous-carbonic (CO 2–H 2O) fluids, the association of carbonic (CO 2) and early aqueous fluids, followed by later aqueous (H 2O-salt) and finally nitrogen-rich fluids. Entrapment of the initial homogeneous aqueous-carbonic fluids prior to fluid immiscibility depicts the evolution of the P–T conditions during the exhumation of the terranes after the peak of green-schist metamorphism. The CO 2 rich-fluid occurs especially in gold-bearing quartz, and are considered as the main evidence of the ore-forming process in the gold-bearing quartz veins. It is considered as a product of immiscibility of the CO 2–H 2O parent. The volatile fraction of carbonic and aqueous-carbonic fluid inclusions is dominated by CO 2, containing minor amounts of N 2, even smaller amounts of CH 4 and sporadically, H 2S. The aqueous-carbonic fluids have moderate salinity (3–10 wt.% eq. NaCl). Late aqueous and N 2 – (CH 4–CO 2) fluids are considered as later, unrelated to the main ore stage, and were trapped during the cooling of the hydrothermal system from 300 to 200 °C. The immiscibility has been favored by a strong pressure drop, the main trapping P–T conditions being 320–370 °C and 105–135 MPa. The mineralizing process is likely related to the immiscibility event, which was probably favored by the release of the fluid pressure after fracturing along the main shear zones. The ore process is likely to have occurred along the main shear zones or related secondary structures affected by cycling of the fluid pressure and quartz sealing–fracturing processes. The superimposed process can also explain the relative complexity of the quartz textures and fluid inclusion microfractures, and the rather wide range in the density of both parent fluid and CO 2-dominated fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.