Abstract

We develop a strongly efficient rare-event simulation algorithm for computing the tail of the steady-state waiting time in a single server queue with regularly varying service times. Our algorithm is based on a state-dependent importance sampling strategy that is constructed so as to be straightforward to implement. The construction of the algorithm and its asymptotic optimality rely on a Lyapunov-type inequality that is used to bound the second moment of the estimator. The solution to the Lyapunov inequality is constructed using fluid heuristics. Our approach takes advantage of the regenerative ratio formula for the steady-state distribution--and does not use the first passage time representation that is particular to the delay in the G/G/1 queue. Hence, the strategy has the potential to be applied in more general queueing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.