Abstract

AbstractOpen fractures provide high‐permeability pathways for fluid flow in sedimentary basins. The potential for flow along permeable or open fractures and faults depends on the continuity of flow all the way to the surface except in the case of convective flow. Upward flowing fluid cools and may cause cementation due to the prograde solubility of quartz, but in the case of carbonates such flow may cause dissolution. The rate and duration of these processes depend on the mechanisms for sustaining fluid flow into the fracture, the geometries of fracture and sedimentary beds intersected, permeability, pressure and temperature gradients. Heat loss to the adjacent sediments causes sloping isotherms which can induce non‐Rayleigh convection. To analyse these problems we have used a simple model in which a single fracture acts as a pathway for vertically moving fluid and there is no fluid transport across the walls of the fracture except near its inlet and outlet. Four mechanisms for fluid flow into the lower part of the fracture are considered: decompression of pore water; compaction of intersected overpressared sediments; focusing of compaction water derived from sediments beneath the fracture; and finally focusing of pore water moving through an aquifer. Water derived from the basement is not considered here. We find that sustained flow is unlikely to have velocities much higher than 1–100 m/yr, and the flow is laminar. The temperature of the fluid expelled at the top of the fracture increases by less than 1% and the vertical temperature gradient in the fracture remains close to the geothermal gradient. Where hot water is introduced from basement fractures (hydrothermal water) during tectonic deformation, much higher velocities may be sustained in the overlying sediments, but here also this depends on the permeability near the surface. Most of the cooling of water with (ore) mineral precipitation will then occur near the surface. In most cases, pore water decompression and sediment compaction will yield only very limited pore water flux with no significant potential for cementation or heating of the sediments adjacent to the fracture. Focusing of compaction water from sediments beneath the fracture or from an intersected aquifer can yield fluxes high enough to cement an open fracture significantly but the flow must be sustained for a very long time. For velocities of 1–100 m/yr, it takes typically 0.3–30 Myr to cement a fracture by 50%. The highest velocities may be obtained when a fracture extends all the way to the surface or sea floor. When a fracture does not reach the sediment surface, the flow velocity is reduced by the displacement of water in the sediments near the top of the fracture. The flow into the fracture from the sediments may often be rate limiting rather than the flow on the fracture. Sedimentary rocks only a few metres from the fracture will receive a much lower flux than the fracture. The fracture will therefore close due to cementation before significant amounts of silica can be introduced into adjacent sandstones. The isotherm slope in the adjacent sediments will in most cases be less than 10–20°. Non‐Rayleigh convection velocities in the sediments adjacent to the fracture are too small to cause any significant diagenetic reactions such as quartz cementation. These quantifications of fluid flow in fractures in sedimentary basins are important in terms of constraining models for diagenesis, heat transport and formation of ore minerals in a compaction‐driven system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call