Abstract

AbstractQuantifying fluid flow through porous media hinges on the description of permeability, a property of considerable importance in many fields ranging from oil and gas exploration to hydrology. A common building block for modeling porous media permeability is consideration of fluid flow through tubes with circular cross section described by Poiseuille's law in which flow discharge is proportional to the fourth power of the tube's radius. In most natural porous media, pores are neither cylindrical nor smooth; they often have an irregular cross section and rough surfaces. This study presents a theoretical scaling of Poiseuille's approximation for flow in pores with irregular rough cross section quantified by a surface fractal dimension Ds2. The flow rate is a function of the average pore radius to the power 2(3‐Ds2) instead of 4 in the original Poiseuille's law. Values of Ds2 range from 1 to 2, hence, the power in the modified Poiseuille's approximation varies between 4 and 2, indicating that flow rate decreases as pore surface roughness (and surface fractal dimension Ds2) increases. We also proposed pore length‐radius relations for isotropic and anisotropic fractal porous media. The new theoretical derivations are compared with standard approximations and with experimental values of relative permeability. The new approach results in substantially improved prediction of relative permeability of natural porous media relative to the original Poiseuille equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.