Abstract

Graetz problem inside the microtube is revisited considering rarefaction effect, viscous dissipation term and axial conduction in the fluid for uniform wall temperature boundary condition in the slip flow regime. The flow is assumed to be hydrodynamically fully developed, thermally developing, and the velocity profile is solved analytically. The temperature field is determined by the numerical solution of the energy equation. The rarefaction effect is imposed to the problem via velocity-slip and temperature jump boundary conditions. The local and fully developed Nu numbers are obtained in terms of dimensionless parameters; Pe, Kn, Br, κ. Fully developed Nu numbers and the thermal entrance length are found to increase by the presence of the finite axial conduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call