Abstract

Large arteries are not straight and rather present curvature and torsion. The present study analyzed fluid flow in a helical vessel without and with a stenosis in comparison with an analogous rectilinear vessel. The analysis is performed by three-dimensional numerical simulation of the Navier–Stokes equations under steady conditions considering stenosis as an axially symmetric reduction of vessel lumen. Results show that the double curvature gives rise to persistent secondary motion which combines with the vorticity separated behind the constriction to develop a complex three-dimensional vorticity structure. The curved streamlines and the three-dimensional vortex wake result in a increase of energetic losses in helical vessels. However, the same symmetry break due to the double curvature improves the capacity of self-cleaning and allows a more rapid wash-out of the flowing blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.