Abstract

A mathematical analysis of the MHD boundary layer flow and heat transfer characteristics of a laminar liquid film over an unsteady stretching sheet in presence of thermal radiation is presented. The effect of thermal radiation using the nonlinear Rosseland approximation is investigated. Similarity solutions are used to transform the governing equations to set of coupled nonlinear ordinary differential equations. Resultant ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg method. A relationship between film thickness β and the unsteadiness parameter S is found; the effects of unsteadiness parameter S, Prandtl number Pr, magnetic parameter Mn, and radiation parameter Nr on the temperature distributions are presented and discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call