Abstract

Using next-to-leading order perturbative QCD and a conjecture of saturation to suppress the production of low-energy partons, we calculate the initial energy densities and formation times for the dissipative fluid dynamical evolution of the quark–gluon plasma produced in ultrarelativistic heavy-ion collisions. We identify the model uncertainties and demonstrate the predictive power of the approach by a good global agreement with the measured centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow simultaneously for the Pb+Pb collisions at the LHC and Au+Au at RHIC. In particular, the shear viscosity in the different phases of QCD matter is constrained in this new model simultaneously by all these data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call