Abstract

Internal recycle quadruple fluidized bed pyrolyzer (IR-QFBP) consists of a dual fluidized bed pyrolyzer and a dual fluidized bed combustor and is proposed in this work. It is a new kind of efficient fluidized bed with high pyrolysis and energy efficiency. IR-QFBP may attract extensive attention because of its compact structure. Cold hydrodynamic characteristics of IR-QFBP are the bases of modeling and designing for the hot one. To fully understand the hydrodynamic characteristics of IR-QFBP, a cold flow model on a laboratory scale was designed and set up; furthermore, the two-fluid model (TFM) based simulation was also carried out. The pressure profiles, fluidization states, velocity profiles, and circulation rates of a solid powder at different operation conditions in IR-QFBP were investigated. The results showed that the stable internal circulation of solid powder can be achieved in IR-QFBP. And different circulation characteristics can be obtained by adjusting the operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call