Abstract

A numerical study is performed to analyze the effect of small control cylinders on fluid force reduction and vortex shedding suppression on the flow past three inline square cylinders using the lattice Boltzmann method. The Reynolds number Re = 160 is fixed while the spacing between the cylinders is taken in the range of 1.0D ≤ g* ≤ 5.0D (where D is the size of the main cylinder) and the control cylinder size is varied from 0.1D to 0.5D. To systematically understand the effect of control cylinders on the forces, a detailed analysis of Strouhal number (St), mean drag coefficient (CDmean), and root mean square values of the drag and lift coefficients is presented in this paper. In this study, it is observed that the average mean drag coefficient (CDmeanaverage) and Strouhal number reached either maximum or minimum values at different values of separation ratio (g*) and small control cylinder size (d). It is found that at (g*, d) = (5.0, 0.0) and (1.0, 0.5), the average CDmean attains its maximum (CDmeanaverage = 0.7813) and minimum (CDmean = 0.0988) values. Furthermore, at (g*, d) = (5.0, 0.3) and (2.0, 0.0) the average St attains its maximum (St = 0.1780) and minimum (St = 0.041) values. It is found that the flow regimes completely change in the presence of control cylinders. In particular, at g* = 4.0 there is a critical flow regime when the size of the control cylinder changes from 0.1 to 0.5. The sudden jump in the mean drag coefficient and Strouhal number for the middle cylinder with their maximum and minimum values also confirms the critical flow regime. The effect of control cylinders within tandem square cylinders has not been studied before.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call