Abstract

In this article we propose a scalable shape optimization algorithm which is tailored for large scale problems and geometries represented by hierarchically refined meshes. Weak scalability and grid independent convergence is achieved via a combination of multigrid schemes for the simulation of the PDEs and quasi Newton methods on the optimization side. For this purpose a self-adapting, nonlinear extension operator is proposed within the framework of the method of mappings. This operator is demonstrated to identify critical regions in the reference configuration where geometric singularities have to arise or vanish. Thereby the set of admissible transformations is adapted to the underlying shape optimization situation. The performance of the proposed method is demonstrated for the example of drag minimization of an obstacle within a stationary, incompressible Navier–Stokes flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.