Abstract

Hydrogen combustion including deflagration and detonation could become a significant threat to the integrity of containment vessel or reactor building in a severe accident of nuclear power stations. In the present study, numerical analyses were carried out for the ENACCEF No.153 test to develop computational techniques to evaluate the flame acceleration phenomenon during the hydrogen deflagration. This experiment investigated flame propagation in the hydrogen-air premixed gas in a vertical channel with flow obstacles. The reactingFoam solver of the open source CFD code, OpenFOAM, was used for the present analysis. Nineteen elementary chemical reactions were considered for the overall process of the hydrogen combustion. For a turbulent flow, renormalization group (RNG) k-ε two-equation model was used in combination with wall functions. Three manners of nodalization were applied and its influences on the flame propagation acceleration were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.