Abstract

The Porgera gold deposit in Papua New Guinea is a world-class example of an alkalic-type epithermal gold system (stage II), which overprints a precursor stage of magmatic-hydrothermal gold mineralization (stage I). Gas and ion chromatographic analyses of fluid inclusions contained in vein minerals from both mineralization stages have been carried out in order to constrain the compositions of the fluids involved in, and the processes attending, ore deposition. These data indicate the presence of three end-member liquids, the most dilute of which was present throughout the mineralization history and is interpreted to represent evolved groundwater of meteoric origin. Its composition is estimated to have been approximately 500 mM Na+, 10 mM K+, 5 mM Li+, 250 mM Cl−, 0.15 mM Br−, and 0.01 mM I−, plus significant concentrations of dissolved gases. More saline liquids were also present during the two main stages of ore formation, and although their compositions differ, both are interpreted to have been derived at least in part from magmatic fluids, and to have been the media by which gold was introduced into the system. Stage I minerals contain fluid inclusions which decrease in salinity towards this dilute end-member composition through the vein paragenesis, reflecting progressive dilution at depth of the magmatic fluid source by groundwaters. Ore deposition is thought to have been caused largely by simple cooling and/or wallrock reactions, although limited in situ fluid mixing may also have occurred. The most saline fluids, present in early quartz and pyrite, contain at least 810 mM Na+, 530 mM Ca2+, 130 mM K+, 12 mM Li+, 87 mM SO4 2−, 960 mM Cl−, 1.1 mM Br−, and 0.05 mM I−, plus significant but variable concentrations of dissolved gases. Fluid inclusions from stage II hydraulic breccia veins reveal the presence of two distinct liquids with contrasting salinities, which were present at different times during vein formation. A higher salinity liquid appears to have predominated during mineralization, whereas lower salinity groundwaters filled the structures during intervening periods. The ore-forming fluid may have been forcibly injected into the veins from depth during fracturing and depressurization events, displacing the resident groundwaters in the process. The original composition of this fluid is estimated to have been at least 1770 mM Na+, 59 mM K+, 180 mM Li+, 210 mM SO4 2−, 680 mM Cl−, 1.4 mM Br−, and 0.09 mM I−, plus 1.5 mol% CO2, 0.19 mol% CH4, and 0.04 mol% N2. Gas chromatographic analyses of fluid inclusions from stage II samples show a decrease in total gas content between early unmineralized veins and post-mineralization vuggy quartz (suitable samples could not be obtained from the ore stage itself). Post-mineralization samples plot along an experimental gas-saturation curve in the CO2-CH4-H2O-NaCl system, obtained at conditions similar to those attending stage II ore deposition at Porgera (200–300 bar, ˜165 °C). These results are interpreted to indicate a period of depressurization-induced phase separation during hydraulic fracturing, which resulted in rich ore deposition. Volatile gases such as CH4 and N2, in addition to CO2 in solution, are shown to have a significant negative effect on total gas solubility. This effect may be of critical importance in lowering the temperature and increasing the depth (pressure) at which phase separation can occur in epithermal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.