Abstract

This study evaluated the postural vascular adjustment in the human forearm which may be responsible for the recent observation that transcapillary fluid balance is maintained above the level of the heart while blood flow decreases in a linear fashion. In this study further evidence was provided that a posturally graded profile of collapsed veins holds for both an overall increase of resistance with height and compensation for hydrostatic effects on capillary pressure. This was achieved by manipulating peripheral venous profile/volume: a proximal outlet resistance (upper arm cuff) was used for re-opening of collapsed distal veins. In test (a), 12 healthy subjects underwent recordings of fluid reabsorption rate and blood flow in a 20-cm segment of their forearm horizontally placed at 36 cm above heart level (third intercostal space). Applying upper arm cuff pressures randomly between 0 and 25 mmHg (0-3.33 kPa) for 15 min led to maxima of blood flow and reabsorption rates at inflations of 5 or 10 mmHg (0.67 or 1.33 kPa). This was attributed to minima in postcapillary resistance facilitating flow and reducing capillary pressure. In test (b) the flow-maximizing outlet resistance found was studied for its effect in different forearm positions (-18, 0, 18, 36, 54 cm relative to heart level). Blood flow then showed a shift of its maximum from heart level to 36 cm above heart level, while the reabsorption rate increased above 18-cm height--in contrast to previous findings with a free circulation. It was therefore concluded that the venous profile in the forearm adjusts postcapillary resistance in such a way that local dehydration is confined at the cost of blood supply. Thicker and less collapsable veins may ensure better flow autoregulation during impaired fluid balance--as seen in the legs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call