Abstract

The link between the distribution of fluid residence time and the distribution of reactive scalars is analysed using Direct Numerical Simulation data. Information about the reactive scalar distribution is needed in order to model the reaction terms that appear in Large Eddy and Reynolds-Averaged simulations of turbulent reacting flows. The lifted flame is simulated taking account of multi-step chemistry for dimethyl-ether fuel. Due to autoignition and flame propagation, the reaction progress increases with residence time. The variation of fluid residence time is evaluated by solving an Eulerian transport equation for the fluid age. The fluid age is a passive scalar with a spatially-uniform source term, meaning that its moments and dissipation rates in turbulent flows can be modelled using closures already established for conserved scalars such as mixture fraction. In combination with the mixture fraction, the fluid age serves as a useful mapping variable to distinguish younger less-reacted fluid near the inlet from older more-reacted fluid downstream. The local fluctuations of mixture fraction and fluid age have strong negative correlation and, building upon established presumed-pdf models for mixture fraction, this feature can be used to construct an accurate presumed-pdf model for the joint mixture fraction/fluid age pdf. It is demonstrated that the double-conditional first-order moment closure combined with the proposed presumed model for the joint pdf of mixture fraction and fluid age gives accurate predictions for unconditional reaction rates – both for pre-ignition radical species produced by low-temperature processes upstream of the flame base, and for major species that are produced at the flame front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.