Abstract

Prussian blue (PB) and its analogues are considered as promising cathode materials for sodium-ion batteries (SIBs) owing to their low cost and high capacity. However, it is still a huge challenge to avoid obvious capacity decay during cycling due to the structural collapse. Herein, we design a method to replace parts of Fe ion sites in PB with Ni ions to prepare fluffy-like nickel PB (PB-Ni) by cationic solution immersion, which improves cycling stability for sodium storage. The content of Ni in PB-Ni is explored by regulating the soaking time in the Ni-containing solution, which results in different effects on the electrochemical performance as cathodes of SIBs. Especially, PB-Ni-1d (soaking in NiCl2 solution for 1 day) exhibits an initial capacity of 114.2 mA h g-1 at 50 mA g-1 and a stable cycling performance of 800 cycles at 300 mA g-1. Furthermore, the reversible phase transformation and small volume variation for PB-Ni-1d are revealed by in situ X-ray diffraction characterization. The nickel hexacyanoferrate in outer layer maintains the cubic phase to stabilize the crystal structure. The cation-exchange strategy provides a facile idea to fabricate high-quality PB cathodes with superior stability for high-performance SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.