Energy Conversion and Management | VOL. 171
Read
Flue gas treatment by power-to-gas integration for methane and ammonia synthesis – Energy and environmental analysis
Abstract
Abstract The present paper aims at assessing the carbon and energy footprint of an innovative process for carbon dioxide recycling, with flue gas as feedstock of nitrogen and carbon dioxide. Nitrogen is converted into ammonia through the Haber-Bosch process and carbon dioxide into methane via Sabatier reaction using hydrogen produced by renewable electricity excess. Carbon and energy footprint analysis of the process was assessed based on experimental data related to hydrogen production by electrolysis, methane synthesis via Sabatier reaction, energy consumption and energy output of the process units for flue gas separation, carbon dioxide methanation and ammonia synthesis. A Life Cycle Assessment method is applied, based on the experimental and computational data, both in case of renewable electricity excess and electricity from the grid. Results show that in case of renewable electricity excess, for a functional unit of 1 kg of treated flue gas, the specific carbon footprint is 0.7819 kgCO2eq and energy footprint is 50.73 MJ, which correspond to 4.012 kg and 260.3 MJ per 1 kg of produced hydrogen. In case of electricity from the grid, the specific carbon footprint is 1.550 kgCO2eq and energy footprint is 59.12 MJ per flue gas mass unit. If the carbon footprint is positive, the process indirectly leads to avoided emissions, ranging from 0.673 to 0.844 kgCO2eq kg−1fluegas, thus proving the sustainability of the proposed pathway.
Concepts
Carbon Footprint Energy Footprint Sabatier Reaction Flue Gas Ammonia Synthesis Life Cycle Assessment Method Carbon Dioxide Methanation Flue Gas Treatment Carbon Dioxide Haber-Bosch Process
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.