Abstract

Concerning the efforts in reducing the impact of fossil fuel combustion on climate change for power production utilizing gas turbine engines Flue Gas Recirculation (FGR) in combination with post combustion carbon capture and storage (CCS) is one promising approach. In this technique part of the flue gas is recirculated and introduced back into the compressor inlet reducing the flue gas flow (to the CCS) and increasing CO2 concentrations. Therefore FGR has a direct impact on the efficiency and size of the CO2 capture plant, with significant impact on the total cost. However, operating a GT under depleted O2 and increased CO2 conditions extends the range of normal combustor experience into a new regime. High pressure combustion tests were performed on a full scale single burner reheat combustor high-pressure test rig. The impact of FGR on NOx and CO emissions is analyzed and discussed in this paper. While NOx emissions are reduced by FGR, CO emissions increase due to decreasing O2 content although the SEV reheat combustor could be operated without problem over a wide range of operating conditions and FGR. A mechanism uncommon for GTs is identified whereby CO emissions increase at very high FGR ratios as stoichiometric conditions are approached. The feasibility to operate Alstom’s reheat engine (GT24/GT26) under FGR conditions up to high FGR ratios is demonstrated. FGR can be seen as continuation of the sequential combustion system which already uses a combustor operating in vitiated air conditions. Particularly promising is the increased flexibility of the sequential combustion system allowing to address the limiting factors for FGR operation (stability and CO emissions) through separated combustion chambers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call