Abstract

It is well known that internal waves in the ocean are an important source of environmental variability which has serious effects in the structure of an acoustic field due to a known source. When measurements of the acoustic field form the input data for an inversion procedure aiming at the recovery of the environmental parameters, the information they carry on includes the internal wave effects. It is therefore natural to assume that neglecting the effects of the internal waves in an inversion procedure based on acoustic field measurements, errors are induced in the inversion. The paper deals with this problem and addresses the case of inversion schemes using travel time information of an acoustic signal. Using a statistical 2D model of the internal waves, based on the Garrett and Munk spectrum, the spatial and temporal evolution of the internal waves field as well as the fluctuations of the sound speed profile is estimated for a characteristic shallow-water environment. Considering a sound speed anomaly in the water column as the oceanographic feature to be recovered, the paper studies the influence of the internal waves field on the modal travel time information obtained through the propagation of a tomographic signal through this environment. The sound speed anomaly denoted as "current" is described by a suitable Gaussian function. Using an analytical expression based on a perturbation approach, the difference in the modal arrival times calculated for a background environment and a perturbed one (considering that the sound speed perturbations are due either to a current or to the summation of a current and of the internal waves field) was calculated for each propagating mode of the waveguide. These calculations led to the conclusion that the internal waves have a non-negligible impact on the arrival times and that the maximum amplitude of a current can be under- or overestimated of several meters per second when these waves are not taken into account in the inversion method, whereas they are present in the oceanic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.