Abstract
We show that the free energy in the mixed p-spin models of spin glasses does not superconcentrate in the presence of external field, which means that its variance is of the order suggested by the Poincare inequality. This complements the result of Chatterjee who showed that the free energy superconcentrates when there is no external field. For models without odd p-spin interactions for $$p\geqslant 3$$ , we prove the central limit theorem for the free energy at any temperature and give an explicit formula for the limiting variance. Although we only deal with the case of Ising spins, all our results can be extended to the spherical models as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.