Abstract

Introduction.Reducing fluctuations in the load transported by hoisting cranes with a flexible rope suspension of the load is an urgent task since it can significantly reduce the time taken to complete the operation of moving the load. A promising direction for reducing load fluctuations is to optimize the trajectory of movement of the load suspension upper point.Materials and methods.The paper discussed the method of mathematical simulation of plane vibrations of a load moved by a crane with a horizontally moving suspension point, using the software of the MATLAB system. For modeling, the authors used the function of the MATLAB ode45 system, intended for the numerical solution of systems of non-stationary differential equations of arbitrary order.The second-orderdifferential equation used to describe the fluctuations of the transported load and its implementation in the form of program code was presented. Moreover, the authors demonstrated the elements of program code for the analysis and visualization of simulation results.Results.The authors obtained and presented the series of graphs in the inclination angle’s changing of the cargo rope, the acceleration of the suspension point and the value of the objective function with the sinusoidal nature of the acceleration. The objective function was the sum of the absolute values of the deflection angle of the rope and the first derivative at the final moment of the suspension point’s movement with acceleration.Discussion and conclusions.As a result, the paper shows that the system with energy dissipation does not reach the zero value of the objective function even by a symmetrical nature of acceleration and deceleration of the suspension point. Therefore, it is necessary to give asymmetry to the acceleration and deceleration periods of the suspension point in order to completely absorb the residual fluctuations of the load.

Highlights

  • Reducing fluctuations in the load transported by hoisting cranes with a flexible rope suspension

  • significantly reduce the time taken to complete the operation of moving the load

  • A promising direction for reducing load fluctuations is to optimize the trajectory of movement of the load suspension upper point

Read more

Summary

МАТЕРИАЛЫ И МЕТОДЫ

Рассмотрена маятниковая колебательная система в виде груза массой m, подвешенного на нерастяжимой нити постоянной длины L. Формат вызова процедуры решателя при помощи данной функции в системе MATLAB имел вид [T,Y]=ode (fun,[0,Tkon],[0 0]), где [0,Tkon] – вектор из двух значений начального и конечного времени моделирования; [0 0] – вектор из двух нулевых начальных значений переменных ω и q в начальный (нулевой) момент времени; fun – название В данной функции, помимо времени t и вектора y из двух переменных ДУ ω и q, в качестве входных параметров выступает коэффициент диссипации энергии B, длина грузового каната L, амплитуда ускорения точки подвеса A и коэффициент задания периода колебаний ускорения точки подвеса k. Для исследования влияния времени движения системы точки подвеса с грузом с ускорением коэффициент задания периода колебаний ускорения точки подвеса k варьировался от 0.1 до 0.2 с шагом 0.0001 в цикле: Конечное время моделирования задавалось по зависимости.

Минимизируемая функция F вычислялась по зависимости
ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ
ВКЛАД СОАВТОРОВ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.