Abstract
Space--time can be understood as some kind of space--time foam of fluctuating bubbles or loops which are expected to be an outcome of a theory of quantum gravity. One recently discussed model for this kind of space--time fluctuations is the holographic principle which allows to deduce the structure of these fluctuations. We review and discuss two scenarios which rely on the holographic principle leading to holographic noise. One scenario leads to fluctuations of the space--time metric affecting the dynamics of quantum systems: (i) an apparent violation of the equivalence principle, (ii) a modification of the spreading of wave packets, and (iii) a loss of quantum coherence. All these effects can be tested with cold atoms. These tests would supplement measurements of a so called ``mystery noise'' at the gravitational wave detector GEO600 which was recently speculated to have its origin in holographic noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.