Abstract
We study the fluctuations of the matrix entries of regular functions of Wigner random matrices in the limit when the matrix size goes to infinity. In the case of the Gaussian ensembles (GOE and GUE) this problem was considered by A.Lytova and L.Pastur in J. Stat. Phys., v.134, 147-159 (2009). Our results are valid provided the off-diagonal matrix entries have finite fourth moment, the diagonal matrix entries have finite second moment, and the test functions have four continuous derivatives in a neighborhood of the support of the Wigner semicircle law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.