Abstract
The basic parameters of a sensor element defining its ultimate performance are sensitivity and intrinsic noise. In plasmonic gas sensors both are determined by refractive index changes due to adsorption and desorption (a–d) of target analyte particles to the sensor active area. In this paper we present a general model that can be simultaneously used to determine sensitivity and intrinsic noise of a plasmonic sensor both during transients and in steady-state and is valid for multi-analyte environments. The model utilizes the conventional probabilistic approach. It is derived without any assumptions about the stochastic nature of the fundamental (a–d) process. It reveals how all stochastic properties of the processes with (pseudo) first order kinetics with the initial number of particles equal to zero can be fully determined from the deterministic solution, without any previous stochastic analysis. Based on the proposed model it is possible to establish the optimum moment for readout when fluctuations are minimal. Transients last longer and fluctuations are lower at lower temperatures. The insight into the transient dynamics opens the possibility to use a single element sensor for multiple analyte sensing. Another result is that a–d noise is higher for smaller adsorption areas, which may be important for micro and nanosystems generally, since each of them has to be kept immersed in some kind of environment and thus be subject to contamination by adsorption that can significantly influence their behavior. Besides being applicable for plasmonic sensors of trace amounts of gases and other nanoplasmonic devices used in sensing, the model is applicable for other adsorption-based sensors, as well as for the investigations of stochastic phenomena in micro and nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.