Abstract
Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O3 concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the "peak-trough" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows "light and dark changes" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O3 concentration helps us to deepen our understanding of the so-called "entrained ozone (EZ) effect" in the atmosphere. Due to the external gravity waves, the concentration of O3 increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O3 concentration entrainment. The formation mechanism of solar photochemical O3 is further deepened and supplemented by analyzing the record-breaking increase of O3 concentration in summer observed in recent years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.