Abstract
While investigating possible precursory signatures of large earthquakes in the ionospheric data measured by the DEMETER and CHAMP satellites, we found ionospheric disturbances related to large earthquakes (M=7.2 and 7.4) that occurred on September 2004 near the south coast of Honshu, Japan. The satellite data were statistically compared with an empirical model and local averages of the large set of data in the study period. A fluctuation in the electron density above the epicenter was observed roughly 2weeks before the main earthquakes. Surveys of the space weather and geomagnetic activities suggest that these fluctuations were not caused by changes in space conditions or by a geomagnetic storm. The features were also distinct from well-known natural ionospheric anomalies. In addition, a peak-like profile in the ion temperature and lowered O+ density around the region of the epicenter was observed a week before the main earthquakes along the satellite passes whose longitudes are close to the epicenter. The features are more apparent when they are compared with the data more distant from the epicenter, suggesting that the disturbances occur along the geomagnetic field lines. The concurrent measurements of the ion drift velocity suggest the fluctuations were triggered by the vertical plasma drift. The observed anomalies disappeared ∼2 weeks after the quakes. According to the current theories on the seismo-ionospheric coupling, the horizontal electric field at the lower boundary of the ionosphere should have been strengthened by the seismic activity in order for the ionospheric plasma movements above the epicenter and its geomagnetic conjugate regions to trigger the observed ionospheric anomalies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.