Abstract

There has been an increasing interest in the quantification of nearly deterministic work extraction from a finite number of copies of microscopic particles in finite time. This paradigm, so called single-shot epsilon-deterministic work extraction, considers processes with small failure probabilities. However, the resulting fluctuations in the extracted work entailed by this failure probability have not been studied before. In the standard thermodynamics paradigm fluctuation theorems are powerful tools to study fluctuating quantities. Given that standard fluctuation theorems are inadequate for a single-shot scenario, here we formulate and prove a fluctuation relation specific to the single-shot epsilon-deterministic work extraction to bridge this gap. Our results are general in the sense that we allow the system to be in contact with the heat bath at all times. As a corollary of our theorem we derive the known bounds on the epsilon-deterministic work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.