Abstract
It has been shown recently that diffusion processes exhibit giant nonequilibrium fluctuations (NEFs). That is, the diffusing fronts display corrugations whose length scale ranges from the molecular to the macroscopic one. The amplitude of the NEF diverges following a power law behavior proportional to q(-4) (where q is the wave vector). However, fluctuations of wave number smaller than a critical "rolloff" wave vector are quenched by the presence of gravity. It is therefore expected that in microgravity conditions, the amplitude of the NEF should be boosted by the absence of the buoyancy-driven restoring force. This may affect any diffusion process performed in microgravity, such as the crystallization of a protein solution induced by the diffusion of a salt buffer. The aim of GRADFLEX (GRAdient-Driven FLuctuation EXperiment), a joint project of ESA and NASA, is to investigate the presence of NEFs arising in a diffusion process under microgravity conditions. The project consists of two experiments. One is carried out by UNIMI (University of Milan) and INFM (Istituto Nazionale per la Fisica della Materia) and is focused on NEF in a concentration diffusion process. The other experiment is performed by UCSB (University of California at Santa Barbara) concerning temperature NEF in a simple fluid. In the UNIMI part of the GRADFLEX experimental setup, NEFs are induced in a binary mixture by means of the Soret effect. The diagnostic method is an all-optical quantitative shadowgraph technique. The power spectrum of the induced NEFs is obtained by the processing of the shadowgraph images. A detailed description of the experimental apparatus as well as the ground-based experimental results is presented here for the UNIMI-INFM experiment. The GRADFLEX payload is scheduled to fly on the FOTON M3 capsule in April 2007.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.