Abstract

We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that B\"odeker's effective theory is consistent with the fluctuation-dissipation theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.