Abstract

We show that Casimir-like forces in boundary-driven systems with a bulk diffusivity anomaly are enhanced by cooperative dynamical effects and can be made locally attractive or repulsive depending on the boundary densities. Theoretical predictions based on mean-field arguments and the explicit evaluation of the Casimir force in the fluctuating hydrodynamics framework are supported by Monte Carlo simulation of a two-dimensional (2D) exclusion process with selective kinetic constraints. Consistent with the entropic interpretation of the Casimir effect, we find that local repulsive forces do appear whenever finite-size transverse density fluctuations exceed their infinite-size value. Our results suggest that the bulk diffusivity anomaly is a crucial ingredient in the small-scale design of driven soft-matter systems with tunable fluctuation-induced forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.