Abstract

In equilibrium, the fluctuation-dissipation theorem (FDT) expresses the response of an observable to a small perturbation by a correlation function of this variable with another one that is conjugate to the perturbation with respect to energy. For a nonequilibrium steady state (NESS), the corresponding FDT is shown to involve in the correlation function a variable that is conjugate with respect to entropy. By splitting up entropy production into one of the system and one of the medium, it is shown that for systems with a genuine equilibrium state the FDT of the NESS differs from its equilibrium form by an additive term involving total entropy production. A related variant of the FDT not requiring explicit knowledge of the stationary state is particularly useful for coupled Langevin systems. The a priori surprising freedom apparently involved in different forms of the FDT in a NESS is clarified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.