Abstract

Turbulence model of kg-ɛg-kp-ɛp-kpg-θ is proposed. In the model, the two-phase velocity correlation turbulent kinetic energy kpg is modeled by transport equation. To close this turbulence model, algebraic expressions of two-phase Reynolds stresses and two-phase velocity correlation variable are established by considering both gas-particle interaction and anisotropy. This turbulence model is used to simulate dense gas-particle flow in a riser and in a downer. The predicted results show the core-annulus flow structure observed in the riser and the skin effect of particle concentration in the downer. The present model gives simulation results in much better agreement with the experimental results than those obtained by kg-ɛg-kp-ɛp-θ model which is simply closed using a semi-empirical dimensional analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.